
UCRL-CONF-209840

DynTG: A tool for Interactive,
Dynamic Instrumentation

M. Schulz, J. May, J. Gyllenhaal

February 18, 2005

Tools for Program Development and Analysis in Computational
Science
Atlanta, GA, United States
May 22, 2005 through May 25, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



DynTG: A Tool for Interactive, Dynamic

Instrumentation

Martin Schulz, John May, and John Gyllenhaal
{schulzm,johnmay,gyllen}@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Abstract. With the increasing complexity of today’s systems, detailed
performance analysis is more important than ever. We have developed
DynTG, a tool for interactive, dynamic instrumentation. It uses per-
formance module plugins to reconfigure the data acquisition and pro-
vides a source browser that allows users to insert any probe function-
ality provided by the modules dynamically into the target application.
Any instrumentation can be added both before and during the applica-
tion’s execution and the acquired data is presented in realtime within the
source viewer. This enables users to monitor their applications’ progress
and interactively control and adapt the instrumentation based on their
observations.

1 Motivation

Users require comprehensive performance toolkits to analyze their applications,
find bottlenecks, and derive appropriate optimizations. Many research projects
have focused on this problem and have developed a large range of such tools.
Some of the more prominent examples are TAU/ParaProf [1], SvPablo [4], and
Kojak [9]. Also several commercial tools are available, including Intel’s Vtune
and SGI’s SpeedShop. All of them allow users to gather a large variety of perfor-
mance metrics and often provide graphical user interfaces to present the results.
However, most of them rely on static source code instrumentation and/or post-
mortem performance analysis and hence lack interactive capabilities.

Dynamic instrumentation is the first step towards interactive tools. Most
tools in this area are built on top of DynInst [2], an API to dynamically in-
sert arbitrary code snippets into running applications. Performance monitoring
infrastructures, like OMIS [6] or DPCL [3], and tools like Paradyn [8] use this
mechanism to insert performance probes into the application. However, these
tools don’t provide the user with interactive, source-code based environments to
control their instrumentation.

With DynTG, we have developed a tool that integrates dynamic instru-
mentation with a source browser and provides users with a fully interactive
performance analysis environment. It builds on top of DPCL to dynamically
instrument applications and to acquire realtime performance data. The actual
performance probes are dynamically loaded into DynTG using a modular plugin
concept. By providing new performance modules, users can reconfigure DynTG

This work was performed under the auspices of the U.S. Department of Energy by University of California

Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-CONF-209840.



Probe−Mod

Probe−Mod

D
yn

In
st

DPCLd DynTG

Target
Application

DPCL−Lib

DynTG Collector

Coll−Mod

Coll−Mod

TG−Comm TG−Comm

AT RUNTIME

Target Node Collector Node GUI Node

ToolGear
Framework

Fig. 1. Architecture of DynTG.

to suite their particular needs and extend it with new performance metrics and
data sources.

All instrumentation is controlled through a scalable source browser developed
using the Tool Gear framework [7]. Performance modules dynamically register
their data sources and instrumentation actions with the Tool Gear based GUI
and thereby dynamically customize the tool based on their requirements. Fur-
ther, all performance data gathered by the probe modules is transmitted to the
GUI and displayed inside the source browser in realtime. This allows users to ob-
serve changes in the application behavior, detect bottlenecks, and, if necessary,
add or remove instrumentation at runtime.

2 The DynTG Architecture

A tool for interactive, dynamic instrumentation must a) provide an extensive
and extensible set of data probes; and b) allow users to insert instrumentation
into their codes through a source browser. DynTG achieves these two goals by
a) providing a plugin concept using dynamically loaded performance modules;
and b) relying on and extending Tool Gear [7], a versatile framework for build-
ing graphical tools. DynTG enables users to specify instrumentation locations
directly in the source code and to select appropriate data probes at these lo-
cations. Once selected, DynTG uses DPCL [3]/DynInst [2] to instrument the
target application with the selected probe functionality. The resulting perfor-
mance data is returned to the GUI and displayed within the source browser on
a per-line basis.

Figure 1 shows the basic architecture of DynTG. It is divided into three ma-
jor components — performance probes, the collector, and the GUI. The GUI
allows the user to spawn and control the collector, which acts as a link or proxy
between the application and the GUI. Once started, it uses DPCL to launch and
control the application on the target system and to install the probe modules.
These modules return any acquired performance data through DPCL to corre-
sponding collector modules. There, the performance data is preprocessed and
then forwarded through the collector infrastructure to the GUI for display using
the Tool Gear communication mechanism.



Since both libraries use standard sockets for the actual communication, we
can (if necessary) place each component onto a different node. For example, the
GUI can run on the user’s desktop and communicate with a remote collector on
a front-end node, which then interacts with the probe modules on the applica-
tion’s compute nodes. This matches the structure of typical cluster or computer
center configurations and has the ability to provide a fast, interactive GUI, while
enabling online accesses to running applications on remote systems.

3 Probe/Collector Modules

DynTG has the ability to dynamically load and activate performance modules.
This allows users to extend, configure, and customize the tool according the
specific monitoring needs.

3.1 Module Concept

Each module is implemented in two separate parts: a probe module, which is
dynamically inserted into the running application; and a collector module, which
is loaded into the DynTG collector.

Probe modules are generally written in C and implement custom data probes.
They communicate the acquired results back to the corresponding collector mod-
ule using DPCL’s transfer mechanisms. In most cases this transfer is accom-
plished with a single call to DPCL’s Ais send.

The corresponding collector module implements the necessary DPCL call-
back, which receives the data, if necessary transforms it into an appropriate
format, potentially performs a preliminary analysis, and then hands the data to
the GUI. In addition, the collector module implements two management routines
required by the framework: a query routine, which returns a list of requirements
for this modules along with a short textual description of its functionality, and
an initialization routine.

The module interfaces are kept small by moving common and low-level func-
tionality into the framework or the communication libraries. This simplifies
the module development process, lowers the learning curve, and hence allows
even unexperienced users not familiar with DPCL or Tool Gear to develop new
probe/collector modules in a short amount of time and thereby to dynamically
extend DynTG without changing the source of either collector or GUI.

3.2 Installation and Activation

During startup, the collector scans a module library and queries each module
found for its installation requirements using the query routine introduced above.
Based on the results it excludes incompatible modules (e.g., those that rely
on specialized hardware or software) and then loads and activates the remaining
ones. During this activation, the module locates the corresponding probe module
and links it to a DPCL callback.

After all probes are loaded and initiated, the collector registers the module’s
functionality with Tool Gear: it compiles a list of possible actions (e.g., potential
instrumentation insertion and removal events) and data sources, and then sends
this list to the GUI. Together with this registration, it establishes a name space,
which is later used to react on GUI actions or send observed data events.



3.3 Module Selection

It is not always necessary or beneficial to load and activate all available in-
strumentation modules. Each module consumes resources and also might incur
conflicts with other modules. This is especially critical with an increasing num-
ber of modules. DynTG therefore enables the user to select and activate a subset
of all available modules. This can either be done using a command line param-
eter during the collector startup or interactively through the DynTG GUI. For
the latter, the collector forwards a list of all available modules together with the
short description returned by the above mentioned query routine to the GUI.
The GUI then builds a selection dialog (see Figure 2/right,bottom) and queries
the user for input. Based on the user’s decision, the GUI requests the activation
of the selected modules in the DynTG collector.

3.4 Existing Modules

Currently, we have implemented three probe/collector modules:
Counter: The counter module provides a counter that counts how often

a program executes a specific location. This module can be used to examine
iteration counts, distribution of execution paths on conditionals, or callgraph
coverage.

Timer: The timer module provides wall clock timing using the UNIX get-

timeofday call. The timer is controlled by two actions that the user can instru-
ment the code with: start timer and stop timer. A stop timer action thereby
always corresponds to the most recently started active timer and computes the
time difference between the two. In order to keep track of these correspondences,
the timer module maintains a timer stack: during a start timer action, the cur-
rent time value is pushed onto the stack and during a stop, this value is retrieved
from the stack and used to compute the time difference.

PMAPI: This module provides direct access the hardware counters on IBM
Power systems using AIX’s Performance Monitoring API (PMAPI). Due to hard-
ware constraints only a subset of events can be accessed at the same time. To
further complicate things, each of the eight hardware counters available in Power-
3 or Power-4 systems can only be used for a specific and distinctly different set of
events. During the loadtime of the PMAPI collector module, the user specifies a
set of events of interest in a priority list1. The module then computes an optimal
mapping of this list to the available hardware resources on the target architec-
ture and configures the hardware counters appropriately. Once completed, the
PMAPI module registers its start and stop events for each available and config-
ured counter and maintains a stack, similar to the one in the timer module, to
associate the corresponding start and stop events.

Table 1 shows the number of lines used for the implementation of each module
(including comments). Despite the fact that lines of codes are naturally a very
inaccurate measurement, the numbers show that the implementation complexity
for each module is low. The collector modules show a constant overhead needed

1 Currently this list is specified in a configuration file; we are currently working on a
GUI version of this selection process



Module Probe Collector

Counter 10 157

Timer 170 171

PMAPI (+ shared utility) 99 (+199) 213 (+199)

Table 1. Implementation complexity of probe/collector modules in lines of code.

to load and register the module, while the complexity in the probe module only
depends on the complexity of the actual probe functionality.

4 GUI Support for Interactive Instrumentation

Dynamic instrumentation enables users to selectively activate instrumentation
in their codes. In order to fully take advantage of this feature, users must be
able to interactively browse their source code, identify possible instrumentation
locations, and interactively choose the required instrumentation at those points.
DynTG uses Tool Gear [7] to implement this functionality and extends it to
provide reconfigurable instrumentation and support for modules.

4.1 Integrating DynTG with the Tool Gear Framework

Source code viewers are complex and difficult to implement, yet required by
a large number of tools. The Tool Gear project [7] was born based on this
observation and provides a versatile framework for the development of interactive
tools. As its core it provides a scalable source viewer, which can display both the
source code itself as well as multiple performance metrics on a per source line
basis. The performance data itself is stored inside Tool Gear using a database.
Data can directly be added to this database from a collector using the Tool Gear
communication library.

The Tool Gear source browser provides a collapsible view of all source mod-
ules on the left side of the window and displays the corresponding performance
information in column style for each source line on the right of it. We use this
generic setup to display performance data acquired by the probe modules. Each
module can register one or more data sources and each of these sources will be
displayed using a separate column within the source browser. The DynTG collec-
tor continuously updates these performance observations during the program’s
runtime. This enables the user to monitor the progress of their code, spot poten-
tial bottlenecks early, and react by inserting additional or removing unnecessary
instrumentation. In addition, Tool Gear aggregates the presented performance
data hierarchically showing the performance of a complete function, module, or
application.

Figure 2 (left) shows a typical view of the source code browser as it is used by
DynTG. In this example we use the timer probe/collector module to instrument
a simple test application and to measure wall clock times of selected function
invocations within main. We place start timer instrumentations (green icons)
before and end time instrumentations (red icons) after the relevant function
calls. The results are displayed in a single data column on the right and are



Fig. 2. DynTG GUI: source browser with timer experiment (left), context-sensitive
action menu for PMAPI module (right,top), module selection dialog (right,bottom).

updated every time the application executes one of the instrumentation points.
In addition, the top rows show the accumulated runtime of all counters in the
main routine, the testcpmod.c module, and the total application.

4.2 DynTG Startup and Configuration

During the startup of DynTG, the Tool Gear infrastructure launches the DynTG
collector on the remote node and establishes the communication using its com-
munication library. As described in Section 3.2, the collector then searches for all
available modules and activates a user-selected subset of those modules. During
their activation, the module compiles a list of actions provided by this mod-
ule and forwards this to the GUI. Examples for this can be “Start a timer” or
“Count at this location”. When the GUI receives a request for a new action, it
selects an appropriate icon and adds it to the list of available actions.

This runtime configuration process guarantees that the GUI is independent
from the collector: the GUI itself does not enable or provide any functionality
to the user. Instead, all actions required by a collector are defined and installed
by the collector. As a consequence, new modules can easily be added without
modifying the GUI code itself. The only exception are probes that require new
datatypes for the performance database or new visualization or display modes.
Most performance modules, however, are able to work with the existing infras-
tructure.

In addition, the GUI queries possible instrumentation points from the collec-
tor at startup and marks them in the source display. At these locations DynTG



Absolute runtime Overhead
Benchmark Baseline Counter Timer PMAPI Counter Timer PMAPI

SMG2000 56.6s 57.7s 58.0s 58.0s 1.94% 2.47% 2.47%

sPPM 53.4s 56.7s 59.5s 60.0s 6.18% 11.4% 12.4%

Table 2. Runtime and Overhead measurements of the three existing DynTG modules.

offers a context-sensitive instrumentation menu that shows all possible instru-
mentation actions that can be inserted or removed at that particular location.
The user can then select from this menu and insert the instrumentation. In ad-
dition, the DynTG includes a bulk instrumentation mechanism to instrument a
set of routines. For this features, the user selects the instrumentation action as
above and specifies the name of the routines to be instrumentation using regular
expressions.

Any instrumentation can be done both before the program’s execution (in
which case the performance data from the whole run is captured) or at runtime
(in which case the performance data is gathered from the time of the instrumen-
tation). It is further possible to dynamically remove instrumentation points.

Figure 2 (right,top) shows an example of such an instrumentation menu. In
this example, the PMAPI module is loaded and instantiated with eight different
native hardware counters. Consequently the menu has 16 entries: a start (green
icons) and a stop (red icons) event for each counter type. Further, the GUI
displays eight columns for the performance data, again one for each hardware
counter. In both cases, the collector has queried the counter names from PMAPI
and registered them with the GUI dynamically.

5 Experiments

In the following section we present experimental results quantifying the overhead
caused by DynTG. All experiments were conducted on one CPU of a dedicated
16-way IBM Power-3 system. We use two numerical applications from the ASC
Purple Benchmark Codes [5]: SMG2000 with a working set of 60x60x60 and
sPPM with a working set of 64x64x64. We inserted a single instrumentation
action into a central location and measured the overhead. This location was
executed 34167 times in SMG2000 and 245760 times in sPPM.

As the results in Table 2 show, DynTG has an low impact on performance
even if the instrumentation is executed very frequently like in sPPM (over 4000
times per second). In general, the overhead corresponds to the work performed
within the data probes inserted into the application. Consequently, the overhead
of the Timer and PMAPI modules is higher, since these modules require system
calls to gather their data. In addition, we compared the runtime of an application
run under the control of DynTG without instrumentation to the baseline and
observed no difference in execution time.

6 Conclusions

In this paper, we presented DynTG, a tool for interactive, dynamic instrumenta-
tion. It includes a scalable source browser, in which the user can view all possible



instrumentation points and insert probes into the application. Once the probes
are installed, the performance data gathered by them is displayed in realtime
inside the source browser at the location of the instrumentation point.

DynTG uses DPCL to realize dynamic instrumentation and relies on and
extends Tool Gear to provide the scalable source browser. To connect those two
components DynTG implements a reconfigurable collector that acts as a proxy
between the data probes and the GUI. The probes as well as the probe specific
parts of the collector are implemented as dynamically loadable plugin modules.
This concept enables users to customize and reconfigure the tool depending on
their actual monitoring requirements.

References

1. R. Bell, A. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for
Parallel Performance Profile Analysis. In Proceedings of the International Confer-
ence on Parallel and Distributed Computing (Euro-Par 2003), pages 17–26, Aug.
2003.

2. B. Buck and J. Hollingsworth. An API for runtime code patching. The International
Journal of High Performance Computing Applications, 14(4):317–329, 2000.

3. L. DeRose, T. Hoover, and J. Hollingsworth. The Dynamic Probe Class Library —
An Infrastructure for Developing Instrumentation for Performance Tools. In Pro-
ceedings of the 15th International Parallel and Distributed Processing Symposium,
Apr. 2001.

4. L. DeRose and D. Reed. SvPablo: A Multi-Language Architecture-Independent
Performance Analysis System. In Proceedings of the International Conference on
Parallel Processing (ICPP), Sept. 1999.

5. Lawrence Livermore National Laboratory. The ASCI purple benchmark codes.
http://www.llnl.gov/asci/purple/benchmarks/limited/code list.html, Oct. 2002.

6. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring
Interface Specification (Version 2.0), volume 9 of LRR-TUM Research Report Series.
Shaker Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7.

7. J. May and J. Gyllenhaal. Tool gear: Infrastructure for parallel tools. In Proceedings
of the 2003 International Conference on Parallel and Distributed Techniques and
Applications, June 2003.

8. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn Parallel Performance Mea-
surement Tool. IEEE Computer, 28(11):37–46, Nov. 1995.

9. B. Mohr and F. Wolf. KOJAK - A Tool Set for Automatic Performance Analysis of
Parallel Programs. In Proceedings of the International Conference on Parallel and
Distributed Computing (Euro-Par 2003), pages 1301–1304, Aug. 2003.


